Содержание

Профессия: Слесарь по ремонту автомобилей 

УЧЕБНОЕ ПОСОБИЕ

НЕКОММЕРЧЕСКОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ "РУССКАЯ ТЕХНИЧЕСКАЯ ШКОЛА"

"ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ"

"Характеристики двигателя."

К основным характеристикам двигателя относятся мощность, крутящий момент и топливная экономичность.

Мощность двигателя.

В двигателе внутреннего сгорания давление газов, образующееся в результате сгорания топливовоздушной смеси, воздействует на днище поршня и перемещает поршень в цилиндре. Перемещая поршень, газы совершают полезную работу*, а двигатель развивает определённую мощность**.

*Работа (А) совершается тогда, когда на тело действует сила (F) и под воздействием этой силы тело движется (перемещается на расстояние S). Другими словами: Механическая работа прямо пропорциональна приложенной силе и пройденному пути (A=FS). Единица измерения работы в системе СИ – Джоуль (Дж). Один Джоуль равен одному Ньютону, умноженному на один метр (1Дж=Нm), т.е., если сила в один Ньютон перемещает тело массой в один кг на расстояние в один метр, то такая сила равна одному Джоулю.

**Мощность (Р) равна работе (А), совершённой за определённое время (единицу времени — t): P=A/t (Мощность=Работа/Время). Единица измерения мощности в системе СИ – Ватт (Вт). Один Ватт равен одному Джоулю, делённому на одну секунду (1Вт=1Дж/1сек), т.е., если работа в один Джоуль произведена за одну секунду, то такая работа воспроизводит мощность, равную одному Ватт. Внесистемной единицей измерения мощности является килограмм-сила, умноженная на один метр, делённый на одну секунду (кгс м/сек). 1кгс м/с = 9,81Вт. В технической литературе по автомобильной тематике также используется такая единица измерения, как лошадиная сила. Одна лошадиная сила равна 75 кгс м/с и 735,5 Вт.

Мощность, развиваемая газами внутри цилиндров двигателя, называется индикаторной мощностью (Pi). Индикаторная мощность не может быть полностью использована для движения автомобиля, так как часть этой мощности затрачивается на преодоление сил трения в самом двигателе (трение в подшипниках, между деталями цилиндропоршневой группы и газораспределительного механизма, взбалтывание масла и т.п.), а также привод вспомогательных механизмов (генератора, насоса охлаждающей жидкости и др.).
Мощность, которая может быть снята с коленчатого вала двигателя и использована для осуществления движения автомобиля, называется эффективной мощностью (Рef).
Эффективная мощность меньше индикаторной мощности на величину механических потерь. Механические потери удобно представлять в виде механического КПД двигателя (η).
КПД двигателя равен отношению эффективной и индикаторной мощности (η = Рef/Pi). Величина КПД современных двигателей лежит в пределах 0,7 – 0,9. Величину КПД определяют экспериментально на специальных установках (тормозных установках барабанного или иного типа, развивающих заданное тормозное усилие).
Эффективная мощность двигателя описывается формулой: Рef = piVdn/2x60x75 (л.с.) , где в числителе:
pi – среднее индикаторное давление газов (кг/м.кв.), действующее на поршень;
Vd – рабочий объём двигателя (м.куб.);
n – число оборотов двигателя (об/мин.);
в знаменателе:
2 – числовой коэффициент (для четырёхтактных двигателей = 2, для двухтактных = 1);
60×75 – числовой коэффициент, для перевода величины мощности из «кгс м/мин» в «лошадиные силы».

Из формулы следует, что эффективная мощность двигателя зависит от: 1) среднего индикаторного давления газов, действующего на поршень, 2) рабочего объёма двигателя и 3) числа рабочих циклов, осуществляемых за условное время работы двигателя, выраженное в оборотах коленчатого вала.

Среднее индикаторное давление газов (pi) — условно постоянное давление которое, действуя на поршень в течение одного рабочего хода, совершает работу, равную индикаторной работе газов в цилиндре за рабочий цикл, т.е. pi =Аi/Vc (отношение индикаторной работы газов Аi к единице рабочего объема цилиндра Vc).
Средние индикаторные давления при номинальной нагрузке у четырехтактных бензиновых двигателей 0.8 — 1.2 МПа, у четырехтактных дизелей 0.7 — 1.1 МПа, у двухтактных дизелей 0.6 — 0.9 МПа.

Рабочий объём двигателяVd равен сумме рабочих объёмов всех его цилиндров (Vd = ΣnVc). Рабочий объём одного цилиндра (Vc) равен произведению площади его основания (So=πd²/4) на ход поршня (h) – (Vc = Soh).

Число рабочих циклов, совершаемых двигателем за одну минуту, равно 2n/T, где n – частота вращения коленчатого вала, T — тактность двигателя (число тактов, совершаемых за рабочий цикл). Для четырёхтактного двигателя Т = 4, а число рабочих циклов — n/2.

Из приведённых выше величин постоянными, т.е. неизменными, зависящими от конструкции двигателя, являются только рабочий объём и тактность двигателя. Остальные величины переменные. Значения этих величин будут зависеть от режима работы и технического состояния двигателя. Из формулы можно видеть, что с ростом оборотов коленчатого вала и давления газов, действующих на поршень, мощность двигателя также будет расти. При этом функция мощности от скорости вращения КВ не является линейной, что иллюстрируется на графике (рис. 1).

Этот факт требует некоторого пояснения.
Дело в том, что величина давления рабочих газов зависит от полноты наполнения цилиндров новой порцией топливовоздушной смеси, скорости и полноты её сгорания и степени (коэффициента) последующей очистки цилиндров от отработавших газов. Степень наполнения и очистки цилиндров, равно как скорость и полнота сгорания топливовоздушной смеси, определяются конструкцией и настройкой газораспределительного механизма, систем впуска и выпуска, топливной системы, а также алгоритмом работы систем управления подачей топлива, зажиганием, наддувом воздуха и фазами газораспределения и лишь в малой степени связана со скоростью вращения коленчатого вала. Максимальная мощность развивается двигателем при достижении таких значений оборотов коленчатого вала, которым будут соответствовать оптимальные настройки и рабочие показатели перечисленных систем и механизмов, обеспечивающие необходимые условия смесеобразования, сгорания смеси и очистки цилиндров. Во всех других случаях (обороты выше или ниже) мощностные показатели двигателя будут ниже максимальных значений.
В технической литературе обороты, на которых достигается максимальная заявленная мощность двигателя, именуются «оборотами максимальной мощности».
Двигатели, максимальная мощность которых достигается на высоких скоростях вращения коленчатого вала (5000 об/мин и более), называются скоростными (высокооборотистыми). Двигатели, максимальная мощность которых достигается на низких скоростях вращения коленчатого вала (менее 5000 об/мин), называются тихоходными (низкооборотистыми). С точки зрения потребительского интереса к продукции автопрома, очень упрощённо, но можно говорить о том, что мощностные показатели двигателя определяют скоростные свойства автомобиля. То есть, высокооборотистый двигатель, при прочих равных условиях, обеспечит лучшие скоростные характеристики автомобиля, нежели низкооборотистый двигатель. Максимальной скорости автомобиль будет достигать на оборотах максимальной мощности. При достижении двигателем режима максимальной мощности двигатель начинает работать только на преодоление сил сопротивления движению, автомобиль не разгоняется.

Для сравнительной оценки различных двигателей с точки зрения совершенства рабочего процесса и конструктивного исполнения пользуются величиной «литровая мощность». Литровая мощность равна отношению мощности двигателя к его рабочему объёму (PL = Pef/Vd). Данная величина показывает, какая мощность может быть «снята» с одного литра рабочего объёма двигателя.

Чем больше литровая мощность тем, при прочих равных параметрах, меньше относительные габариты и удельная масса двигателя, тем выше его технико-конструктивные показатели. Литровая мощность современных моторов лежит в пределах 15 – 37 кВт/л — для бензиновых двигателей, и 6 – 22 кВт/л — для дизелей.

Крутящий момент

При работе двигателя на его коленчатом вале развивается крутящий момент, который через механизмы трансмиссии передаётся на ведущие колёса автомобиля и приводит автомобиль в движение. Крутящий момент (Mk) равен произведению силы (F) на плечо её действия (r) и измеряется в ньютонах, умноженных на метр (H x m) или в килограмм силах, умноженных на метр (кгс x м).
Mk=F x r;
В двигателе силой действия является давление газов. Плечом действия силы является кривошип коленчатого вала. Чем выше давление газов, действующее на поршень, и больше радиус кривошипа, тем больший крутящий момент развивает двигатель.

Что важнее: крутящий момент или мощность двигателя?

Величина давления рабочих газов зависит от ряда условий, рассмотренных в предыдущем подразделе (Мощность двигателя). Радиус кривошипа определяется конструкцией двигателя.
Крутящий момент двигателя растёт с увеличением оборотов коленчатого вала и достигает максимального значения на т.н. "оборотах максимального крутящего момента". Обороты коленчатого вала, соответствующие оборотам максимального крутящего момента, для разных типов двигателей лежат в пределах 1500 – 3000 об/мин (дизели) и 3000 – 4500 об/мин (бензиновые моторы). «Привязка» максимального крутящего момента к оборотам коленчатого вала, как и в случае с мощностью, обусловлена настройкой газораспределительного механизма мотора его впускного и выпускного тракта, а также системы питания и управления двигателем.
Мощность и крутящий момент двигателя связаны формулой: Mk = 716,2 Pef/n (кгс м);
Крутящий момент передаётся трансмиссией на ведущие колёса автомобиля и определяет силу тяги ведущих колёс: Ft = Mk x c x η/r, где Ft – сила тяги; Mk – момент крутящий; c – суммарное передаточное число трансмиссии; η – КПД трансмиссии (0,88 – 0,95); r – радиус ведущих колёс.
С точки зрения потребительского интереса к продукции автопрома, упрощённо, но можно говорить о том, что крутящий момент определяет тяговые характеристики автомобиля. Чем больший крутящий момент развивает двигатель, тем выше тяговые усилия на ведущих колёсах. Быстрый рост крутящего момента двигателя указывает на хорошую разгонную динамику автомобиля благодаря интенсивному увеличению силы тяги ведущих колесах.
Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше двигатель приспособлен к изменению дорожных условий (тем реже придется переключать передачи).
Большими крутящими моментами обладают малооборотистые моторы.

Топливная экономичность

Экономичность работы автомобильного двигателя измеряется количеством топлива в граммах, израсходованного на каждую единицу мощности за единицу времени (один час) и называется «удельным расходом топлива» (ge г/кВт час). Расход топлива увеличивается с ростом оборотов коленчатого вала и зависит от совершенства конструкции двигателя и его технического состояния. Суммарный (общий) расход топлива характеризуется расходом топлива в килограммах за один час работы и называется «часовым расходом топлива» (GT кг/ч). Удельный расход топлива может быть определён по формуле ge = GT 1000/ Pef (г/кВт ч).

Курсы автослесарей, автоэлектриков, автожестянщиков, диагностов НОУ "Русская Техническая Школа". Пройти обучение.

Что такое крутящий момент двигателя автомобиля

Большинство автовладельцев и водителей оценивают ходовые качества своих автотранспортных средств мощностью двигателя. В процессе эксплуатации транспортных средств часто возникают ситуации необходимости намеренного обгона сопутствующих машин в процессе движения. Находясь в определенном ритме движения, водитель «давит» на педаль акселератора и не получает желаемого ускорения обгона. В этом случае более информативной характеристикой приемистости двигателя является крутящий момент на определенных оборотах двигателя.

Максимальная мощность, указываемая в технических характеристиках двигателя, приводится на соответствующих оборотах. Для бензиновых ДВС обычно эта величина соответствует 5000 – 6000 оборотов в минуту, дизельных – приблизительно 3500 – 4500 об/мин. Поэтому считается, что все бензиновые движки являются высокооборотными, дизельные – низкооборотными. Это не всегда так.

Каждый автовладелец, особенно тот, который желает показать мастерство пилотирования симпатичным девушкам, должен знать характеристики крутящего момента своего авто.

Определение крутящего момента двигателя

Крутящий М момент силы согласно определению равен произведению F силы, действующей на рычаг L длиной. Формула, известная многим из школьного курса физики, представляет:

М=F*L

Если переводить входные величины в единую систему измерений, сила F измеряется в ньютонах, длина (в СИ) в метрах, М будет измеряться в ньютон на метр.

Сила, образуемая при воспламенении воздушно-топливной смеси, приводит в действие кривошипно-шатунный механизм. Чем больше рычаг, то есть разность расстояний от центра воздействия до места его осуществления, тем выше крутящий момент. Теоретически крутящий момент возможно пропорционально длине рычага увеличить. Но при этом уменьшится частота вращения двигателя, и увеличатся размеры механизма коленвала. В судах морских плаваний такие изменения несущественны, но автомобиль требует минимизации размеров всех комплектующих.

Крутящий момент ДВС определяет его мощность. Упрощенная формула для пересчета момента в параметр мощности имеет вид:

Р=М*n / 9549, где М – крутящий момента (в Н*м) на оборотах n (в об/мин). Р – мощность в киловаттах. 9549 – округленное число, полученное в результате сокращения констант.

Для пересчета мощности в более привычные для автолюбителей л.с. результат требуется умножить на 1,36.

Таким образом, мощность прямо пропорциональна количеству оборотов. В силу особенности конструкции бензиновые двигатели эффективно работают на оборотах до 8000 об/мин и выше. Таким образом, высокооборотные движки могут развить достаточно высокую мощность. У дизельных движков максимальная характеристика крутящего момента приходится на оборотах порядка 3500 – 4500 об/минуту. Обычно на таких оборотах происходит крейсерское движение автомобиля в городском ритме. Поэтому совершать маневры обгона и перестроения, резко увеличивая скорость на невысоких оборотах, на автомобилях с дизельными ДВС легче.

Характеристики момента приводятся в технических параметрах транспортного средства только вместе с величиной оборотов, для которых они измерены. В некоторых справочных данных автопроизводители указывают крутящий момент двигателя на холостых оборотах.

Наиболее полную картину ходовых параметров двигателя дают зависимости крутящего момента.

Зависимость мощности и крутящего момента двигателя

Крутящий момент по мере увеличения оборотов двигателя постепенно возрастает, при оборотах около 2800 немного стабилизируется, достигая своего максимума приблизительно 178 н*метр при 4500 об/мин. Мощность двигателя по мере увеличения оборотов продолжает возрастать, что согласуется с приведенной выше формулой. Однако после достижения величины оборотов 5400 об/мин, крутящий момент снижается с большей скоростью, чем растут обороты, и мощность уменьшается.

Это соответствует физической интерпретации процессов в двигателе. На малых оборотах в двигатель поступает мало топлива и воздуха, мощность невысокая. По мере увеличения оборотов сгорает больше топлива, вырабатывается больше энергии. При дальнейшем увеличении количества оборотов двигателя мощность начинает снижаться по причинам:

  • увеличение потерь на процессы трения;
  • кислородное голодание;
  • инерционные и другие механические потери;
  • тепловые потери.

Конструкторы ДВС стремятся расширить диапазон стабильного участка характеристики зависимости крутящего момента. В качестве одного из широко распространенных конструктивных решений применяются системы интеллектуального турбонаддува. Они позволяют избежать ситуации кислородного голодания на различных оборотах.

Крутящий момент относительно стабилен при оборотах двигателя от 2500 до 5500 об/мин. Водители могут смело начинать процесс обгона даже на малых оборотах.

Высокооборотные двигатели имеют стабильный момент до 6500 – 7500 об/мин. Это позволяет развить максимальную мощность на оборотах около 7500 об/мин, как приведено на рисунке 3.

Если вы подходите к покупке автомобиля серьезно, желательно покопаться в справочниках, на форумах, ознакомиться с дилерской информацией, погуглить, и найти зависимости крутящего момента и мощности. Тогда вы с научной точки зрения будете судить о ходовых параметрах автомобиля.

Выбирая автомобиль для эксплуатации в городских условиях, целесообразно приобрести дизельный авто, если вы любитель погонять с ветерком на автобанах, подойдет высокооборотный бензиновый двигатель.

Как увеличить крутящий момент

Характеристики крутящего момента двигателя формируются еще на этапе конструкторской разработки конкретной модели движка.

Что такое крутящий момент двигателя?

Они также учитываются при расчетах тормозной системы, КПП, подвески и других систем. Самостоятельное увеличение крутящего момента двигателя может привести к преждевременному износу деталей авто.

Существует несколько способов повышения крутящего момента:

  • форсирование двигателя изменением параметров поршневой группы;
  • внесение изменений в топливную систему;
  • увеличение производительности воздухозабора;
  • чип-тюнинг.

Многие участники различных любительских автосостязаний используют комплексное форсирование двигателя. Однако следует помнить, что увеличение мощности и крутящего момента двигателя на четверть, уменьшает его ресурс вдвое.

Видео

Поделитесь с друзьями!

Крутящий момент двигателя- Что это и от чего зависит

Профессия: Слесарь по ремонту автомобилей 

УЧЕБНОЕ ПОСОБИЕ

НЕКОММЕРЧЕСКОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ "РУССКАЯ ТЕХНИЧЕСКАЯ ШКОЛА"

"ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ"

"Характеристики двигателя."

К основным характеристикам двигателя относятся мощность, крутящий момент и топливная экономичность.

Мощность двигателя.

В двигателе внутреннего сгорания давление газов, образующееся в результате сгорания топливовоздушной смеси, воздействует на днище поршня и перемещает поршень в цилиндре.

Перемещая поршень, газы совершают полезную работу*, а двигатель развивает определённую мощность**.

*Работа (А) совершается тогда, когда на тело действует сила (F) и под воздействием этой силы тело движется (перемещается на расстояние S). Другими словами: Механическая работа прямо пропорциональна приложенной силе и пройденному пути (A=FS). Единица измерения работы в системе СИ – Джоуль (Дж). Один Джоуль равен одному Ньютону, умноженному на один метр (1Дж=Нm), т.е., если сила в один Ньютон перемещает тело массой в один кг на расстояние в один метр, то такая сила равна одному Джоулю.

**Мощность (Р) равна работе (А), совершённой за определённое время (единицу времени — t): P=A/t (Мощность=Работа/Время). Единица измерения мощности в системе СИ – Ватт (Вт). Один Ватт равен одному Джоулю, делённому на одну секунду (1Вт=1Дж/1сек), т.е., если работа в один Джоуль произведена за одну секунду, то такая работа воспроизводит мощность, равную одному Ватт. Внесистемной единицей измерения мощности является килограмм-сила, умноженная на один метр, делённый на одну секунду (кгс м/сек). 1кгс м/с = 9,81Вт. В технической литературе по автомобильной тематике также используется такая единица измерения, как лошадиная сила. Одна лошадиная сила равна 75 кгс м/с и 735,5 Вт.

Мощность, развиваемая газами внутри цилиндров двигателя, называется индикаторной мощностью (Pi). Индикаторная мощность не может быть полностью использована для движения автомобиля, так как часть этой мощности затрачивается на преодоление сил трения в самом двигателе (трение в подшипниках, между деталями цилиндропоршневой группы и газораспределительного механизма, взбалтывание масла и т.п.), а также привод вспомогательных механизмов (генератора, насоса охлаждающей жидкости и др.).
Мощность, которая может быть снята с коленчатого вала двигателя и использована для осуществления движения автомобиля, называется эффективной мощностью (Рef).
Эффективная мощность меньше индикаторной мощности на величину механических потерь. Механические потери удобно представлять в виде механического КПД двигателя (η).
КПД двигателя равен отношению эффективной и индикаторной мощности (η = Рef/Pi). Величина КПД современных двигателей лежит в пределах 0,7 – 0,9. Величину КПД определяют экспериментально на специальных установках (тормозных установках барабанного или иного типа, развивающих заданное тормозное усилие).
Эффективная мощность двигателя описывается формулой: Рef = piVdn/2x60x75 (л.с.) , где в числителе:
pi – среднее индикаторное давление газов (кг/м.кв.), действующее на поршень;
Vd – рабочий объём двигателя (м.куб.);
n – число оборотов двигателя (об/мин.);
в знаменателе:
2 – числовой коэффициент (для четырёхтактных двигателей = 2, для двухтактных = 1);
60×75 – числовой коэффициент, для перевода величины мощности из «кгс м/мин» в «лошадиные силы».

Из формулы следует, что эффективная мощность двигателя зависит от: 1) среднего индикаторного давления газов, действующего на поршень, 2) рабочего объёма двигателя и 3) числа рабочих циклов, осуществляемых за условное время работы двигателя, выраженное в оборотах коленчатого вала.

Среднее индикаторное давление газов (pi) — условно постоянное давление которое, действуя на поршень в течение одного рабочего хода, совершает работу, равную индикаторной работе газов в цилиндре за рабочий цикл, т.е. pi =Аi/Vc (отношение индикаторной работы газов Аi к единице рабочего объема цилиндра Vc).
Средние индикаторные давления при номинальной нагрузке у четырехтактных бензиновых двигателей 0.8 — 1.2 МПа, у четырехтактных дизелей 0.7 — 1.1 МПа, у двухтактных дизелей 0.6 — 0.9 МПа.

Рабочий объём двигателяVd равен сумме рабочих объёмов всех его цилиндров (Vd = ΣnVc). Рабочий объём одного цилиндра (Vc) равен произведению площади его основания (So=πd²/4) на ход поршня (h) – (Vc = Soh).

Число рабочих циклов, совершаемых двигателем за одну минуту, равно 2n/T, где n – частота вращения коленчатого вала, T — тактность двигателя (число тактов, совершаемых за рабочий цикл). Для четырёхтактного двигателя Т = 4, а число рабочих циклов — n/2.

Из приведённых выше величин постоянными, т.е. неизменными, зависящими от конструкции двигателя, являются только рабочий объём и тактность двигателя. Остальные величины переменные. Значения этих величин будут зависеть от режима работы и технического состояния двигателя. Из формулы можно видеть, что с ростом оборотов коленчатого вала и давления газов, действующих на поршень, мощность двигателя также будет расти. При этом функция мощности от скорости вращения КВ не является линейной, что иллюстрируется на графике (рис. 1).

Этот факт требует некоторого пояснения.
Дело в том, что величина давления рабочих газов зависит от полноты наполнения цилиндров новой порцией топливовоздушной смеси, скорости и полноты её сгорания и степени (коэффициента) последующей очистки цилиндров от отработавших газов. Степень наполнения и очистки цилиндров, равно как скорость и полнота сгорания топливовоздушной смеси, определяются конструкцией и настройкой газораспределительного механизма, систем впуска и выпуска, топливной системы, а также алгоритмом работы систем управления подачей топлива, зажиганием, наддувом воздуха и фазами газораспределения и лишь в малой степени связана со скоростью вращения коленчатого вала. Максимальная мощность развивается двигателем при достижении таких значений оборотов коленчатого вала, которым будут соответствовать оптимальные настройки и рабочие показатели перечисленных систем и механизмов, обеспечивающие необходимые условия смесеобразования, сгорания смеси и очистки цилиндров. Во всех других случаях (обороты выше или ниже) мощностные показатели двигателя будут ниже максимальных значений.
В технической литературе обороты, на которых достигается максимальная заявленная мощность двигателя, именуются «оборотами максимальной мощности».
Двигатели, максимальная мощность которых достигается на высоких скоростях вращения коленчатого вала (5000 об/мин и более), называются скоростными (высокооборотистыми). Двигатели, максимальная мощность которых достигается на низких скоростях вращения коленчатого вала (менее 5000 об/мин), называются тихоходными (низкооборотистыми). С точки зрения потребительского интереса к продукции автопрома, очень упрощённо, но можно говорить о том, что мощностные показатели двигателя определяют скоростные свойства автомобиля. То есть, высокооборотистый двигатель, при прочих равных условиях, обеспечит лучшие скоростные характеристики автомобиля, нежели низкооборотистый двигатель. Максимальной скорости автомобиль будет достигать на оборотах максимальной мощности. При достижении двигателем режима максимальной мощности двигатель начинает работать только на преодоление сил сопротивления движению, автомобиль не разгоняется.

Для сравнительной оценки различных двигателей с точки зрения совершенства рабочего процесса и конструктивного исполнения пользуются величиной «литровая мощность». Литровая мощность равна отношению мощности двигателя к его рабочему объёму (PL = Pef/Vd). Данная величина показывает, какая мощность может быть «снята» с одного литра рабочего объёма двигателя. Чем больше литровая мощность тем, при прочих равных параметрах, меньше относительные габариты и удельная масса двигателя, тем выше его технико-конструктивные показатели. Литровая мощность современных моторов лежит в пределах 15 – 37 кВт/л — для бензиновых двигателей, и 6 – 22 кВт/л — для дизелей.

Крутящий момент

При работе двигателя на его коленчатом вале развивается крутящий момент, который через механизмы трансмиссии передаётся на ведущие колёса автомобиля и приводит автомобиль в движение. Крутящий момент (Mk) равен произведению силы (F) на плечо её действия (r) и измеряется в ньютонах, умноженных на метр (H x m) или в килограмм силах, умноженных на метр (кгс x м).
Mk=F x r;
В двигателе силой действия является давление газов. Плечом действия силы является кривошип коленчатого вала. Чем выше давление газов, действующее на поршень, и больше радиус кривошипа, тем больший крутящий момент развивает двигатель. Величина давления рабочих газов зависит от ряда условий, рассмотренных в предыдущем подразделе (Мощность двигателя). Радиус кривошипа определяется конструкцией двигателя.
Крутящий момент двигателя растёт с увеличением оборотов коленчатого вала и достигает максимального значения на т.н. "оборотах максимального крутящего момента". Обороты коленчатого вала, соответствующие оборотам максимального крутящего момента, для разных типов двигателей лежат в пределах 1500 – 3000 об/мин (дизели) и 3000 – 4500 об/мин (бензиновые моторы). «Привязка» максимального крутящего момента к оборотам коленчатого вала, как и в случае с мощностью, обусловлена настройкой газораспределительного механизма мотора его впускного и выпускного тракта, а также системы питания и управления двигателем.
Мощность и крутящий момент двигателя связаны формулой: Mk = 716,2 Pef/n (кгс м);
Крутящий момент передаётся трансмиссией на ведущие колёса автомобиля и определяет силу тяги ведущих колёс: Ft = Mk x c x η/r, где Ft – сила тяги; Mk – момент крутящий; c – суммарное передаточное число трансмиссии; η – КПД трансмиссии (0,88 – 0,95); r – радиус ведущих колёс.
С точки зрения потребительского интереса к продукции автопрома, упрощённо, но можно говорить о том, что крутящий момент определяет тяговые характеристики автомобиля. Чем больший крутящий момент развивает двигатель, тем выше тяговые усилия на ведущих колёсах. Быстрый рост крутящего момента двигателя указывает на хорошую разгонную динамику автомобиля благодаря интенсивному увеличению силы тяги ведущих колесах.
Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше двигатель приспособлен к изменению дорожных условий (тем реже придется переключать передачи).
Большими крутящими моментами обладают малооборотистые моторы.

Топливная экономичность

Экономичность работы автомобильного двигателя измеряется количеством топлива в граммах, израсходованного на каждую единицу мощности за единицу времени (один час) и называется «удельным расходом топлива» (ge г/кВт час). Расход топлива увеличивается с ростом оборотов коленчатого вала и зависит от совершенства конструкции двигателя и его технического состояния. Суммарный (общий) расход топлива характеризуется расходом топлива в килограммах за один час работы и называется «часовым расходом топлива» (GT кг/ч). Удельный расход топлива может быть определён по формуле ge = GT 1000/ Pef (г/кВт ч).

Курсы автослесарей, автоэлектриков, автожестянщиков, диагностов НОУ "Русская Техническая Школа". Пройти обучение.